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We study a system of globally coupled 2D nonlinear oscillators (using the two- junction SQUID as
a prototype for a single element) each of which can undergo a saddle-node bifurcation characterized
by the disappearance of the stable minima in its potential energy function. This transition from fixed
point solutions to spontaneous oscillations is controlled by external bias parameters, including the
coupling coefficient. For the deterministic case, an extension of a center manifold reduction, carried
out earlier for the single oscillator, yields an oscillation frequency that depends on the coupling;
the frequency decreases with coupling strength and/or the number of oscillators. In the presence of
noise, a mean field description leads to a nonlinear Fokker-Planck Equation for the system which is
investigated for experimentally realistic noise levels. Furthermore, we apply a weak external time-
sinusoidal probe signal to each oscillator and use the resulting (classical) resonance to determine
the underlying frequency of the noisy system. This leads to an explanation of earlier experimental
results as well as the possibility of designing a more sensitive SQUID-based detection system.

PACS numbers: 05.45.-a, 05.40.Ca, 02.50.Ey, 02.30.Hq, 85.25.Dq

I. INTRODUCTION

A large class of 2D nonlinear systems, exemplified in this work by the 2- junction or dc Superconducting Quan-
tum Interference Device (SQUID), is known to display spontaneous (i.e. in the absence of external driving signals)
oscillations when the dynamical system crosses a threshold through a bifurcation [1]. The oscillations are periodic
but non-sinusoidal, approaching sinusoidal behavior as one goes farther past the bifurcation threshold. The oscilla-
tion frequency is a function of the “distance” past the onset of the bifurcation, and displays a characteristic scaling
behavior with respect to the bias parameter that controls the bifurcation [1]. In specific dynamical systems, the
spontaneous oscillation frequency may be computed, usually via a center-manifold reduction of the dynamics to a 1D
normal form. Applying an external sinusoidal signal to the system in this state of spontaneous oscillation yields a
very rich and complex dynamical behavior [2] including a lowering of the noise-floor (when fluctuations are present)
as well as frequency-mixing behavior characterized by the generation of combination harmonics [3] whose spectral
amplitudes depend on the background noise.

When tuned near the onset of bifurcations, dynamical systems can display an enhanced sensitivity to external
perturbations with the response characterized by signal amplification [4], often with a concomitant lowering of an
environmental noise-floor (see e.g. [2, 5]), but also (depending on the parameters) potentially adverse effects e.g.
the amplification of environmental fluctuations with an accompanying lowering of the response signal-to-noise ratio
(SNR) [6]. Among the nonlinear systems that have been studied in recent years, the dc SQUID has recently received
considerable attention, since it is a device that is severely constrained by noise-floor issues and one in which a detailed
study of the (noise-mediated) cooperative behavior in various regimes of operation can yield clever techniques for
confronting noise-related performance issues that constrain current devices.

The dc SQUID [7] consists of two Josephson junctions symmetrically inserted into a superconducting loop. It is
the most sensitive magnetic field detector in existence and is widely used in a variety of fields including biomagnetics,
geophysics, communications, and explosives detection. If no external signal is present, the system can be in either
of two dynamical states depending on the biasing (usually achieved by a combination of externally applied magnetic
flux and bias current to the SQUID loop): a static or superconducting state wherein the potential function has stable
minima corresponding to a conservation of total loop current (the applied bias current is balanced by the sum of the
Josephson currents in the junctions) and a spontaneously oscillating or “running” regime wherein the potential minima
disappear. The oscillation (or running) frequency has been computed [8]; it shows the scaling behavior referred to
above.

Past research has focused primarily on designing and developing sophisticated shielding and noise-cancellation
techniques to render SQUIDs more noise-tolerant and has, almost exclusively, dealt with single SQUIDs. Recently, a
new strategy has emerged: instead of trying to minimize noise, this strategy searches for the area in parameter space
where the SQUID is optimally sensitive. Specifically, the Stochastic Resonance (SR) effect [9] and its variations, have
been studied theoretically [10, 11] and experimentally [12], particularly near the onset of the saddle-node bifurcation
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from static to running dynamics. While the spectral response and the accompanying SNR at the frequency of a
weak sinusoidal target signal have been observed in experiments [12] and simulations [10, 11] to display a SR-like
amplification, there are indications that this is not completely in-line with the “classic” SR behavior. Specifically,
we have observed a maximum in the SNR in the space of the deterministic control parameters (loop bias current
and magnetic flux). The theory in this paper and in earlier work [13] provides an explanation for these experimental
observations.

Often, a dramatic enhancement in the system response can be achieved by coupling elements in an array [14].
Motivated by this phenomenon, we study here the dynamical behavior in a globally coupled ensemble of dc SQUIDs
with and without background noise (assumed to arise mainly from thermal fluctuations in the junctions). The
SQUIDs and their bias conditions (including the coupling strengths) need not be identical in practice, although some
restrictions may be imposed by our desire to obtain analytical results. We study our globally coupled system both
analytically and numerically, finding that the system exhibits static and oscillatory regimes of operation, completely
analogous to the single SQUID case [2, 8]. Our analysis stems from the center manifold reduction technique that
was applied to the single SQUID problem, and recently described semi-analytic techniques for solving the 2D Fokker-
Planck Equation (FPE) associated with the Langevin dynamics [15]. This previous work is conveniently generalized
to treat the N-SQUID (N may be arbitrary) case with global coupling.

Particular attention is paid to the underlying (i.e. running) frequency of the system. For the deterministic case,
we find an exact solution for the frequency of the running state. For the noisy case, however, a general technique to
determine the frequency is not available. With small noise levels, a center- manifold reduction of the dynamics to a
1D normal form, as was performed in [8] is, in principle, possible (see also [16]). However, for experimentally realistic
values of noise an alternative method needs to be applied. We have recently shown [13] that the introduction of a
sinusoidal “probe” signal leads to a classical resonance phenomenon (also observed in [17] for a system undergoing a
Hopf bifurcation) which can be exploited to determine the underlying frequency of the running state.

Our main results are the following: (1) increasing the number of SQUIDs renders the time-independent (supercon-
ducting) stationary state more stable, restricting the accessible values of the parameter where we can find an oscillatory
solution. (2) The frequency of the oscillatory solutions depends on the coupling, with large coupling and/or large N
reducing the frequency and extending the parameter regime for the existence of stationary state; coupling can destroy
the running solutions. (3) A nonlinear FPE may be derived and solved in the stationary state for the averaged
screening current, the relevant experimental observable. Notice that the Fokker-Planck equation obtained for a single
element is always a linear partial differential equation (see e.g. [18]). We stress the fact that due to the nonlinear
nature of our derived FPE classical results regarding linear FPEs including linear response theory [18, 19], cannot be
applied in general, and alternative approaches are needed. (4) Coupling a time-sinusoidal target or probe signal to
each SQUID leads to a resonance in the averaged screening current when the signal frequency approaches the running
frequency. This affords the possibility of using a single device or an array as a frequency-sensitive detector.

The paper is organized as follows: After a rapid overview of the dc SQUID dynamics in section II, we obtain (section
III A) the stationary states and study the onset of the oscillatory regime in terms of the two natural laboratory control
parameters, the magnetic flux Φex, and the dc bias current J for arbitrary values of the coupling and number N of
SQUIDs. In section III B, we present an analytical calculation of the frequency of the running state and its scaling
in terms of the distance from the bifurcation point. This is followed (section IV) by an investigation into the effects
of noise on the coupled system dynamics. Finally, we discuss the inclusion of a sinusoidal probe signal in section V.
Our results are summarized and discussed in section VI.

II. BACKGROUND AND MODEL EQUATIONS

In its simplest form, a dc SQUID consists of two Josephson junctions inserted symmetrically (asymmetric config-
urations are also possible, in practice, but we do not treat this here) into a superconducting loop. The dynamics of
this device are well known [7] and we offer only a rapid overview without derivation. In terms of the Schrödinger
phase angles δ1,2 of the two (assumed identical) junctions we can write down the measurable screening current I in
the loop:

β
I

I0
= δ1 − δ2 − 2π

Φe
Φ0
, (1)

where β ≡ 2πLI0/Φ0 is the nonlinearity parameter, I0 the junction critical current, L the loop inductance, Φe an
external applied magnetic flux and Φ0 ≡ h/2e is the flux quantum. In the absence of noise and a target magnetic
flux, we can use the resistively shunted junction (RSJ) model to write down equations for the currents in the two

arms of the SQUID via a lumped circuit representation; when transformed via the Josephson relations δ̇i = 2eVi/h̄,
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linking the voltage and the quantum phase difference across the junction i, these equations take the form,

τ δ̇1 =
Ib
2

− I − I0 sin δ1, τ δ̇2 =
Ib
2

+ I − I0 sin δ2, (2)

where τ ≡ h̄/2eR, R being the normal state resistance of the junctions. The dc bias current Ib is applied symmetrically

to the loop. Rescaling the time by τ/I0, one can write the above in the form δ̇i = −∂U(δ1, δ2)/∂δi with the 2D potential
function defined as

U(δ1, δ2) = − cos δ1 − cos δ2 − J(δ1 + δ2) +
1

2β
(δ1 − δ2 − 2πΦex)

2, (3)

where we have introduced the dimensionless bias current J ≡ Ib/2I0 and normalized applied flux Φex ≡ Φe/Φ0.
In the static regime, one may set the time-derivatives in (2) equal to zero, in the absence of any external time

dependent signals; in practice, this could be done with time-dependent signals if the signal frequency as well as the
bandwidth of any underlying noise, are well contained within the device bandwidth τ−1, ensuring that the device
behaves like a static nonlinearity. The resultant steady-state phase equations are constrained by the continuity relation

δ2 − δ1 = 2πn− 2π
Φe + LI

Φ0
, (4)

n being an integer. Adding and subtracting the steady-state phase equations, we are lead immediately to the current
conservation relations for the loop:

2J = sin δ1 + sin δ2, 2I = I0(sin δ2 − sin δ1). (5)

Further, the I equation can be manipulated to yield a transcendental equation for the screening current:

I

I0
= − sin

(

πΦex +
βI

2I0

)

cos

[

sin−1

(

J +
I

I0

)

+ πΦex +
βI

2I0

]

. (6)

Equation (6) may be solved numerically for the screening current; the ensuing transfer characteristic (TC) is periodic
in the applied flux Φex with period 1, and possibly hysteretic, with the hysteresis loop width controlled by the bias
current J . For J = 0 one obtains hysteresis for any nonlinearity β; for 0 < J ≤ 1, hysteresis occurs over some range of
β, linked to a multistable potential function U . When the current conservation equations (5) are satisfied, the SQUID
is in its superconducting state with the state point resting in a potential minimum, corresponding to a saturation
state on the TC; in this configuration, the bias current is balanced by the Josephson supercurrents in the junctions.

A close examination of potential function (3) shows that the externally adjustable bias parameters Φex and J
control the symmetry and well-depth, respectively. Adjusting these parameters leads to a transition from a regime
characterized by a multistable potential and the long- time static solutions discussed in the preceding paragraph, to
one wherein pairs of minima and saddles have coalesced to yield a potential with points of inflection, followed by (upon
further adjustment of the bias parameters) a potential with no minima. In this regime, the conservation relations are
no longer obeyed unless one includes an ohmic correction term and the SQUID is said to be in the “running regime”
(sometimes referred to as the “voltage regime”), characterized by spontaneous oscillations in the observable (in this
case, the screening current I). A “saddle-node” bifurcation has occurred with the critical point corresponding to a
point of inflection in the potential. The spontaneous oscillations have zero frequency at the critical point; past this
point, the frequency increases with a characteristic scaling behavior [1, 8] with the distance from the bifurcation.

Following this preamble, we start with an extension of the model equations (2) to describe a system of globally
linearly coupled dc SQUIDs, a network that can be experimentally realized in a variety of ways. One possible
experimental scenario could be the following: a network of pickup coils is connected in parallel to sense and sum the
fluxes of all the SQUIDs. Some of the resulting flux (depending of the coupling strength) is applied to each SQUID
by feeding back the total output current through a feedback coil. Since every SQUID can interact magnetically with
the next neighbor, leading to a local-type coupling, it is advisable to place each SQUID in a shielded environment.
This form of coupling gives rise to a near-global coupling similar to the one we have proposed here, with each SQUID
subject to a flux due to all the other SQUIDs in the same way. Global coupling is also most amenable (of all the
possible coupling schemes) to theoretical treatment.

The theoretical variables of interest are the Schrödinger phase differences δ
(k)
j (j = 1, 2) across each Josephson

junction of the kth SQUID (k=1,...,N):

τk
I0k

˙
δ
(k)
j = Jk + (−1)j

Ik
I0k

− sin δ
(k)
j , j = 1, 2, k = 1, . . . , N, (7)
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where Ik represents the screening current, Jk the normalized (to I0k) externally applied bias current, I0k the critical
current of the k-th junctions, and τk = h̄/(2eRk) is a characteristic time constant (Rk being the normal state resistance
of the junctions). The screening current Ik (the experimental observable of interest) at the kth SQUID is induced
in the loop by an external magnetic flux Φe which is assumed identical for all SQUIDs. Each SQUID is inductively
coupled to the loop currents of the remaining SQUIDs with equal mutual inductance coupling of strength M . The
screening current can be written in the form:

βk
Ik
I0k

= δ
(k)
1 − δ

(k)
2 −

2π

Φ0



Φe +M
∑

m6=k

Im



 (8)

where βk ≡ 2πLkI0k/Φ0 is the nonlinearity parameter of the kth SQUID, Lk being its loop inductance. Since the
screening current Im appearing on the right hand side of (8) is itself a function of every other screening current, (8)
represents an infinite nested series.

In general, this series cannot be summed in closed form; hence we expand in powers of M . To this end, let us
rewrite (8) as (A+B)I = ∆, where we define the following matrices:

A =











β1 0 . . . 0
0 β2 . . . 0
...

. . .
...

0 . . . βN











, B =
2πM

Φ0











0 1 1 . . . 1
1 0 1 . . . 1
...

. . .
...

1 1 1 . . . 0











, I =











I1/I01
I2/I02

...
IN/I0N











,∆ =













δ
(1)
1 − δ

(1)
2 − 2πΦex

δ
(2)
1 − δ

(2)
2 − 2πΦex

...

δ
(N)
1 − δ

(N)
2 − 2πΦex













. (9)

Then, we obtain by simple iteration:

I = A−1∆



1 +

∞
∑

j=1

(−MBA−1)j



 = C∆, (10)

where we have defined C ≡ A−1/(1 − MBA−1). For the special case of N = 2, the sum in (10) can be performed
analytically; the result is,

I =
1

1 −
4π2I01I02
Φ2

0
β1β2

M2

[

I01
β1

− 2πM
Φ0

I01I02
β1β2

− 2πM
Φ0

I01I02
β1β2

I02
β2

]

(11)

Inserting (10) into (7), we arrive at our final set of equations for the dynamics of the kth SQUID:

τk
I0k

˙
δ
(k)
j = Jk + (−1)j

N
∑

i=1

Cki(δ
(i)
1 − δ

(i)
2 − 2πΦex) − sin δ

(k)
j j = 1, 2, k = 1, . . . , N, (12)

III. GLOBALLY COUPLED SQUIDS WITHOUT NOISE

A. Onset of the running state

Before determining the onset of the running state for the coupled case, let us review the situation for a single
SQUID. As mentioned earlier, a single dc SQUID exhibits two different states of operation: a superconducting state
where the long-time phases are time-independent, and a “running state” characterized by oscillatory phases. The
boundary between these states is plotted for two different values of β in Fig. 1 (solid curves). The phase space in
Fig. 1 is spanned by the two primary experimentally controllable parameters: the bias current J and the normalized
external flux Φex. Since our equations are invariant under Φex → 1 − Φex the phase diagram is symmetric around
the Φex = 1

2 line. The region in phase space which exhibits the running state is labeled RS and the superconducting
regime corresponds to SS. In the superconducting state, all solutions of (2) approach a fixed point, with the potential
energy having stable minima corresponding to the current conservation f = sin δ1 + sin δ2 − 2J . In this state we can
distinguish between two different cases: In the first one, the so-called hysteretic regime case, the system possesses
four fixed points of which two are stable (nodes), and two are unstable (saddles). This case occurs for any value of
the nonlinearity β when J = 0, and occurs over some range of β when J is different from zero. In the second case, the



5

0 0.2 0.4 0.6 0.8 1
J

0

0.2

0.4

0.6

0.8

1

Φ
ex

M=0
M=0.1

RS

SS

(1)

(3)
(2)

(4)

β1=0.4

β2=2

FIG. 1: Phase diagram in the parameter space (J,Φex) of two different SQUIDs (β1 = 0.4, β2 = 2). SS denotes the stationary (i.e.

superconducting)solution, while RS corresponds to the running state regime. The solid curves correspond to the uncoupled case (M = 0),

and the dashed curve to the coupled one (M = 0.1). The screening current in the β1 SQUID as a function of time is numerically calculated

and displayed in Fig. 2 at the points marked by (1) J = 0.4, Φex = 0.35; (2) J = 0.4, Φex = 0.41; (3) J = 0.4, Φex = 0.47 ; and (4)

J = 0.2, Φex = 0.5

system possesses only two fixed points, one stable and one unstable. The running state can be reached by increasing
J and keeping Φex constant. In both the hysteretic case and the non-hysteretic case the stable and unstable fixed
points coalesce in a saddle-node bifurcation at J = Jc. Past Jc, a limit cycle is created in a global bifurcation, the
attractor resulting from the chain of (merged) saddle-node-saddle connections [20].

The phase diagram (for a single SQUID, M = 0) of Fig. 1 can obviously be obtained numerically; however recent
work [10] has shown that it can also be found analytically. Consider the function f = sin(δ1) + sin(δ2) − 2J . In the
superconducting state a plot of f vs. δ1 will have two or four zeros (hysteretic or non-hysteretic regime respectively).
At the onset of the running state only one zero survives and f will have a maximum. Since δ2 is given by the
continuity equation J − (δ2 − δ1 − 2πΦex)/β − sin δ1 = 0 (obtained from the system (2) in the long-time limit), the
onset of the running state can be found using the Lagrange multiplier technique: maximize f subject to the condition
J−(δ2−δ1−2πΦex)/β−sin δ1 = 0. The phase diagram so obtained [10] shows very good agreement with experimental
results [12].

We can generalize this idea to the case of N SQUIDs. Without loss of generality we assume that β1 < β2 < . . . < βN .
We start with the uncoupled case, using earlier results [10] to obtain the critical point for each SQUID; specifically,
we find the critical values of the bias current, Jck, for fixed Φex. For our particular choice of βk we find that
Jc1 < Jc2 < . . . < JcN . As in the single SQUID case, we seek extrema of the function f , now defined for the first

SQUID: f1 = sin(δ
(1)
1 ) + sin(δ

(1)
2 ) − 2J , where we have assumed, for simplicity, identically biased SQUIDs: Jk = J for

all k. Rather than having a single constraint we now have 2N − 1 constraints given by

Li = J − sin δ
(i)
1 +

N
∑

j=1

Cij(δ
(j)
1 − δ

(j)
2 − 2πΦex), i = 1, . . . , N (13)

Ki = −2J + sin δ
(i)
1 + sin δ

(i)
2 , i = 2, . . . , N. (14)

To find the extrema of f1, subject to the constraints Li,Ki, we apply the Lagrange multiplier technique and construct
the function

H(δ
(1)
1 , δ

(1)
2 ; . . . ; δ

(N)
1 , δ

(N)
2 ) = f1 +

N
∑

i=1

λiLi +

N
∑

i=2

λi+N−1Ki, (15)

The extrema of H , ∂H/∂δ
(i)
1,2 = 0, i = 1, . . . , N , can be found by solving the following system of equations,

∂H

∂δ
(1)
1

= cos δ
(1)
1 − λ1(C11 + cos δ

(1)
1 ) −

N
∑

i=2

Ci1λi = 0, (16)

∂H

∂δ
(2)
1

= −λ2(C22 + cos δ
(2)
1 ) −

∑

i6=2

Ci1λi + λN+1 cos δ
(2)
1 = 0, (17)
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FIG. 2: Screening current of the β1-SQUID, I1, as function of time for the coupled (N = 2) and uncoupled case. Figures represent

the points (1)-(4) on the phase diagram fig. (1). In (4), for the coupled case, the evolution of two different initial conditions have been

displayed, showing the existence of bistability (2 solutions for M = 0.1) of solutions. This corresponds to the hysteretic regime.

... (18)

∂H

∂δ
(N)
1

= −

N−1
∑

i=1

CiNλi − λN (C22 + cos δ
(N)
1 ) + λ2N−1 cos δ

(N)
1 = 0, (19)

∂H

∂δ
(1)
2

= cos δ
(1)
2 +

N
∑

i=1

Ci1λi = 0, (20)

∂H

∂δ
(2)
2

=

N
∑

i=1

Ci2λi + λN+1 cos δ
(2)
2 = 0, (21)

... (22)

∂H

∂δ
(N)
2

=

N
∑

i=1

CiNλi + λ2N−1 cos δ
(N)
2 = 0. (23)

λ1 can be easily obtained, by summing Eqs. (16), and (20),

λ1 = 1 +
cos δ

(1)
2

cos δ
(1)
1

, (24)

while the other multipliers λi, i = 2, . . . , 2N−1, are obtained by solving the corresponding linear system of equations.

Once we eliminate the Lagrange multiplier λi, we obtain a single equation for δ
(i)
1 , i = 1, . . . , N . This set of equations,
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FIG. 3: Phase diagram in the parameter space (J, Φex) of three different SQUIDs (β1 = 0.4, β2 = 2, β3 = 3). The screening current of

the β1 SQUID, I1 as function of time is numerically calculated and displayed at the points marked by (1) J = 0.9, Φex = 0.23; and (2)

J = 0.9, Φex = 0.32, for the coupled case (M = 0.1).

along with Li = 0, i = 1, . . . , N , and Ki = 0, i = 2, . . . , N allow us to find the maximum of f1, which will depend on
Φex. In addition, we require that such a maximum should coincide with f1 = 0 at the onset of the running state.
This results in a system of nonlinear equations that can be solved. By selecting the appropriate solution one obtains
the critical value of the external flux Φex (up to an integer constant).

In Fig. 1, we show the results of our calculation for N = 2 as a dashed line. Since for this value of N we can sum Eq.
10 exactly, the boundary is exact. Fig. 2 displays the time evolution of the screening current I1 corresponding to the
β1-SQUID for the points marked (1) through (4) in Fig. 1. In Fig. (3) we show the phase diagram for three different
coupled SQUIDs, and the screening current of the β1-SQUID versus time is plotted. To obtain these results, we have
summed Eq. (10) using 10 terms. Our analytic results agree very well with numerical simulations, the relative error
being less than 10−3.

B. Frequency of the running state

Having found the locus of critical points for the onset of the running state we now proceed to find the frequency
of the spontaneous oscillations. As in Sec. IIA, we will make use of techniques applied to the single SQUID case [8].
For simplicity, we consider SQUIDs with identical critical current I0k = I0, normal resistance Rk = R0, and identical
bias (Jk = J). Rescaling time by τ/I0, eqs. (7) and (10) yield:

δ̇
(k)
j = J +

(−1)j

βk



δ
(k)
1 − δ

(k)
2 − 2πΦex −

2π

Φ0
M

∑

l6=k

1

βl
(δ

(l)
1 − δ

(l)
2 − 2πΦe)



 − sin δ
(k)
j +O(M2). (25)

We start the analysis of the coupled case by considering the dynamics in the vicinity of the fixed-point solution when

J = Jc1. It is convenient first to rewrite eq.(25) in terms of the sum and difference variables Σ(k) = (δ
(k)
1 +δ

(k)
2 )/2, δ(k) =

(δ
(k)
1 − δ

(k)
2 )/2. Expanding (25) up to O((J − Jc1)

3) around the fixed-point solution Σ
(k)
0 , δ

(k)
0 and J = Jc1 yields,

ẋ(k) = −(
2

βk
+Ak)x

(k) +Bky
(k) +

ε

βk

∑

j 6=k

1

βj
(2δ

(j)
0 − 2πΦex) + 2ε

∑

j 6=k

x(j) + Ck(x
(k))2 + 2Dkx

(k)y(k) + Ck(x
(k))2

ẏ(k) = (J − Jc1) −Aky
(k) +Bkx

(k) +Dk(y
(k))2 + 2Ckx

(k)y(k) +Dk(x
(k))2,

J̇ = 0,

Ṁ = 0, (26)

where x(k) = δ(k) − δ
(k)
0 , y(k) = Σ(k) − Σ

(k)
0 , Ak = cosΣ

(k)
0 cos δ

(k)
0 , Bk = sin Σ

(k)
0 sin δ

(k)
0 , Ck = 1

2 cosΣ
(k)
0 sin δ

(k)
0 ,

Dk = 1
2 sin Σ

(k)
0 cos δ

(k)
0 , and we have introduced a rescaled coupling parameter ε = 2πM/Φ0.
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To analyze the center manifold [20], the linear part must first be diagonalized. To this end, let us consider the
following rotation:













v1
u1

...
vN
uN













= S













y1
x1

...
yN
xN













, S =













cos θ1 − sin θ1 0 0 . . . 0 0
sin θ1 cos θ1 0 0 . . . 0 0

...
. . .

...
0 0 0 0 . . . cos θN − sin θN
0 0 0 0 . . . sin θN cos θN













, (27)

where tan 2θk = −βk sin Σ
(k)
0 cos δ

(k)
0 . The eigenvalues are given by

0,−
2

β1
− 2A1,−

1

βk
−Ak ±

1

βk

1

cos 2θk
, k = 2, . . . , N (28)

Using the transformation (27), eq.(26) transforms into













v̇1
u̇1

...
v̇N
u̇N













= S













J − Jc1
0
...

J − Jc1
0













+ S

















0
ε
β1

∑

j 6=1
1
βj

(2δ
(j)
0 − 2πΦex)

...
0

ε
βN

∑

j 6=N
1
βj

(2δ
(j)
0 − 2πΦex)

















+ (29)















0 0 0 0 . . . 0 0
0 − 2

β1
− 2A1 0 0 . . . 0 0

...
. . .

...
0 0 0 0 . . . ψ−N 0
0 0 0 0 . . . 0 ψN



























v1
u1

...
vN
uN













+ S















D1(y
(1))2 + 2C1x

(1)y(1) +D1(x
(1))2

2ε
∑

j 6=1 x
(j) + C1(x

(1))2 + 2D1x
(1)y(1) + C1(x

(1))2

...
DN (y(N))2 + 2CNx

(N)y(N) +DN (x(N))2

2ε
∑

j 6=N x
(j) + CN (x(N))2 + 2DNx

(N)y(N) + CN (x(N))2















(30)

where ψ±k = − 1
βk

− Ak ± 1
βk

1
cos 2θk

. It can be proven numerically that the eigenvalues are always negative or zero.

Thus, from center manifold theory, the stability of (Σ(k), δ(k)) = (Σ
(k)
0 , δ

(k)
0 ) near J = Jc1 can be determined by

studying a one-parameter family of first-order ordinary differential equations on a center manifold, represented by the
v1, and ε variables. To compute the center manifold and derive the vector field on the center manifold, we assume

ui = hi(v1, ε) = a
(1)
i v2

1 + a
(2)
i εv1 + a

(3)
i ε2 + . . . , i = 1, . . . , N (31)

vj = hj+N (v1, ε) = b
(1)
j v2

1 + b
(2)
j εv1 + b

(3)
j ε2 + . . . , j = 2, . . . , N (32)

The center manifold must satisfy [20]

f
∂hi
∂v1

−Bihi − gi = 0, i = 1, . . . , 2N − 1, (33)

where f = D1(y
(1))2 + 2C1x

(1)y(1) +D1(x
(1))2,

B =



















− 2
β1

− 2A1

ψ−2

ψ2

...
ψ−N

ψN



















, g =











2ε
∑

j 6=1 x
(j) + C1(x

(1))2 + 2D1x
(1)y(1) + C1(x

(1))2

...
DN (y(N))2 + 2CNx

(N)y(N) +DN (x(N))2

2ε
∑

j 6=N x
(j) + CN (x(N))2 + 2DNx

(N)y(N) + CN (x(N))2











. (34)

From (33), equating terms of like powers to zero, the coefficients a
(l)
i , b

(l)
j in expansion (32) can be obtained. Once

such coefficients are found, the evolution of v1 on the center manifold can be readily calculated as

v̇1 = (J − Jc1) cos θ1 −





ε

β1

N
∑

j=2

1

βj
(2δ

(j)
0 − 2πΦex)



 sin θ1 + αv2
1 + 2γ

ε2

β1
v1 +O((J − Jc1)

3), (35)
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FIG. 4: Two SQUIDs: Comparison between the numerical simulations of the system of equations (7) and the analytical frequency for two

different values of the bias current J :(1) J = Jc1 + 0.001, and (2) J = Jc1 +0.0005, with Jc1 = 0.821152. Parameters are β1 = 0.9, β2 = 1,

and Φex = 0.2.

where ηj = 2
ψj

cos θj sin θ1, ξj = 2
ψ

−j
sin θj sin θ1, α = cos θ1(D1 − C1 sin 2θ1) − sin θ1(C1 − D1 sin 2θ1), and γ =

[

∑N

j=2
1
βj

(ξj cos θj sin θ1 − ηj sin θj sin θ1)
]

. Integrating the last equation, we obtain the solution

v1(t) =

√

F

α
−
γ2ε4

α2
tan

(

t
√

Fα− γ2ε4
)

−
γε2

α
, (36)

where F = (J − Jc1) cos θ1 − [ ε
β1

∑N

j=2
1
βj

(2δ
(j)
0 − 2πΦex)] sin θ1. Thus, for the frequency of the running state we find

f =
√

Fα− γ2ε4/2π (37)

The most salient feature of this expression is that the frequency of the running state decreases when the coupling ε
increases. In fact, there exists a critical value of the coupling (obtained by setting the rhs of (37) equal to zero) above
which the oscillation frequency is zero: too strong a coupling “kills” the running states. Thus, the coupling strength
can be used to tune the system towards the bifurcation point, a feature we will use below when we discuss ways to
improve SQUID sensitivity. Also, we have numerically verified that increasing the number N of SQUIDs results in a
decrease in the frequency.

Fig. 4 shows a comparison between the numerical simulations of the system of equations (7) and the frequency
obtained by using the analytical expression (37) for the case of N = 2. The agreement between the numerical results
and the analytical results is excellent, particularly, as expected, for small values of J − Jc1. Fig. 5 shows a similar
comparison for the cases N = 3, and N = 4.

IV. GLOBALLY COUPLED SQUIDS WITH NOISE

In this section, we analyze the model equations (25) in presence of thermal noise. Specifically, we investigate the
Langevin dynamics

δ̇
(k)
j = Jk +

(−1)j

βk



δ
(k)
1 − δ

(k)
2 − 2πΦex −

2π

Φ0
M

∑

l6=k

1

βl
(δ

(l)
1 − δ

(l)
2 − 2πΦex)



 − sin δ
(k)
j + ξ

(j)
k +O(M2), (38)

where ξ
(j)
i ’s are Gaussian white noises, with < ξ

(j)
i (t) >= 0, < ξ

(l)
i (t)ξ

(m)
j (t′) >= 2Dδijδlmδ(t− t′).

Taking into account the mean-field-type coupling, the model (25) can be written in a more convenient form by
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FIG. 5: Comparison between the numerical simulations of the system of equations (7), and the analytical frequency for N = 3 and N = 4

SQUIDs, kept fixed the bias current to J = Jc1 + 0.001. Parameters are the same as in Fig. 4, and now β3 = 1.1, and β4 = 1.3.

defining the average screening current Ī ,

Ī =
1

N

N
∑

l=1

1

βj
(δ

(l)
1 − δ

(l)
2 −

2π

Φ0
Φex). (39)

Then Eq. (38) reads

δ̇
(k)
j = J +

(−1)j

βk

[

(1 +
2π

Φ0βk

M̄

N
)(δ

(k)
1 − δ

(k)
2 − 2πΦex) −

2π

Φ0
M̄Ī

]

− sin δ
(k)
j + ξ

(j)
k , (40)

where M̄ ≡ MN . We are interested in the analytical investigation of the Langevin dynamics above, for the case of
very largeN . A neat picture of such a case can be given by the limiting-model obtained whenN → ∞ (thermodynamic
limit). In this limit, it is well known [21, 22] that models with mean-field coupling are described by an evolution
equation for the one-particle probability density. This can be seen by noting that the hierarchy of equations for all
the multiparticle probability densities can be closed by assuming molecular chaos. In such a way, the one-system
probability density ρ(δ1, δ2, t) is asymptotically in the limit, N → ∞, the solution of the following nonlinear Fokker-
Planck equation:

∂ρ

∂t
= D

[

∂2ρ

∂δ21
+
∂2ρ

∂δ22

]

−
∂

∂δ1
(v1 ρ) −

∂

∂δ2
(v2 ρ). (41)

The drift-terms are given by

v1(δ1, δ2, t) = J −
1

β
η(δ1, δ2) − sin δ1 (42)

v2(δ1, δ2, t) = J +
1

β
η(δ1, δ2) − sin δ2, (43)

where η = δ1 − δ2 − 2πΦex − 2π M̄
Φ0

Ī . The probability density is required to be 2π-periodic as a function of δ1, and δ2,
and normalized according to

∫ 2π

0

∫ 2π

0

ρ(δ1, δ2, t)dδ1dδ2 = 1. (44)

In order to satisfy the periodic boundary conditions, the coefficients appearing in the drift terms (42), (43) must be
periodic, and the function η(δ1, δ2) should be continued periodically as well. On the other hand, to satisfy the flux
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FIG. 6: Comparison between the average screening current Ī obtained by solving numerically simulation the nonlinear Fokker-Planck

equation (spectral method), and the analytical solution for different values of the coupling strength M̄ . SQUIDs are identical, and

parameters are J = 0, β = 1, Φex = 0.4, and D = 0.1.

periodicity in the screening current, and reproduce the behavior found in (6) for a single element, the flux 2πΦex and

coupling term 2π M̄
Φ0

Ī should also be periodic. Then, the expression for η is

η = δ1 − δ2 − 2πΦex −
2π M̄

Φ0
Ī = −i

∞
∑

l=1

(−1)l+1

l

[

e
i l(δ1−δ2−2πΦex− 2π M̄

Φ0
Ī)

− e
−i l(δ1−δ2−2πΦex− 2π M̄

Φ0
Ī)

]

. (45)

The average screening current is now given by

Ī(t) =

∫

dβf(β)

∫

dJg(J)

∫

dΦexh(Φex)

∫ 2π

0

∫ 2π

0

dδ1dδ2
1

β
η′(δ1, δ2)ρ(δ1, δ2, t) (46)

where η′(δ1, δ2) is the periodic continuation of δ1 − δ2 − 2πΦex. For completeness, we have allowed for the possibility
that the parameter values β, J and Φex may be drawn from distributions f(β), g(J), and h(Φex) respectively. However,
for simplicity, we will restrict ourselves to identical SQUIDs in the remainder of the paper. In contrast to the single
SQUID case [15], the FPE derived here is nonlinear, and we can expect more complicated dynamical behavior.

For the special case J = 0, it is possible to find an analytical solution for long time, assuming that a steady state
regime is reached. The stationary solution is given, in this case, by

ρ0(δ1, δ2;β,Φex) = αe− 1

2β D
(δ1−δ2−2π n−2πΦex−2π M̄Ī)2e

1

D
cos δ1e

1

D
cos δ2 (47)

where

α =

[∫ 2π

0

∫ 2π

0

dδ1dδ2e
− 1

2β D
(δ1−δ2−2π n−2πΦex−2π M̄Ī)2e

1

D
cos δ1e

1

D
cos δ2

]−1

, (48)

and

Ī =

∫ 2π

0

∫ 2π

0

dδ1dδ2
1

β
(δ1 − δ2 − 2πn− 2πΦex)ρ0(δ1, δ2;β,Φex), (49)

where it should be noted that the average screening current Ī in (47) is determined self-consistently via (49).
In order to study the solution of the FPE in more cases of interest, we have to invoke numerical simulations. To

solve the nonlinear FPE we utilize our recently developed numerical method, which consists of a generalization of
the spectral method (or more often called eigenfunction expansion in the Fokker-Planck literature, see e.g [18]) for a
single SQUID already derived in [15]. The idea is to expand ρ in Fourier series,

ρ(δ1, δ2, t) =

∞
∑

n=−∞

∞
∑

m=−∞

rmn (t)ei nδ1eimδ2 , (50)
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exploiting the 2π- periodicity in δ1, and δ2. The coefficients rmn in (50) are complex-valued, while ρ is real-valued.
Thus, rmn = (r−m

−n )∗, where ∗ denotes the complex conjugate. From the normalization condition (44), it follows
r00 = 1/(2π)2. Introducing (50) into the FPE, we obtain the following hierarchy of ordinary differential equations for
the coefficients rmn :

ṙmn = −D(n2 +m2)rmn − i J(n+m)rmn +
n

2
(rmn−1 − rmn+1) +

m

2
(rm−1
n − rm+1

n )

+
n−m

β

∑

l

(−1)l+1

l

[

cos[2π l(Φex + M̄ Ī)](rm+l
n−l − rm−l

n+l )

−i sin[2π l(Φex + M̄ Ī)](rm+l
n−l + rm−l

n+l )
]

(51)

n = −∞, . . . ,∞,m = −∞, . . . ,∞, l = 1, . . . ,∞

where the average screening current Ī is given by,

Ī(t) =
I0
β

[

−8π2
∞
∑

l=1

(−1)l+1

l
Im(r−l

l ei 2π lΦex)

]

. (52)

The numerical method consists of truncating the infinite hierarchy of first- order, coupled nonlinear differential
equations, for a reasonable number of coefficients n = −N, . . . , N , and m = −M, . . . ,M , setting rM+1

N+1 = r−M−1
−N−1 = 0.

We have compared the numerical solution obtained via the nonlinear Fokker-Planck approach for a one-SQUID
probability density, to the solution of the Langevin equations for a large number of SQUIDs (N = 500). The solution
of the FPE, corresponding to the limiting model (corresponding to N → ∞) provides (not shown) excellent agreement
with the N−finite case. This shows that N = 500 is already close to infinity for a practical purpose. Finally, Fig.
6 shows a comparison between the analytical and numerical solutions of the FPE for the case J = 0 for different
values of the coupling parameter M̄ . The perfect agreement between the analytical and numerical results validates
our numerical scheme.

V. INCLUSION OF AN EXTERNAL PROBE SIGNAL

A. Numerical Results

For the deterministic case we have already found that the coupling strength changes the frequency of the running
state. To investigate the effect of the coupling strength in the noisy case we need to determine the underlying frequency
of the system. One way of determining this frequency is to compute Ī from the Langevin equations and evaluate its
time dependence. Unfortunately, this is computationally very costly. On the other hand, our extensive numerical
investigations have shown that Ī calculated from the FPE, which offers a computationally superior way to characterize
the system, does not display a time-dependent behavior [23]. Of course, this finding does not rule out the existence
of a stable time-dependent solution, but does require an alternative way to find the frequency. Fortunately, as we will
see below, including an external time-sinusoidal “probe” signal leads to a classical resonance (also observed in [17] for
a system undergoing a Hopf bifurcation) which can be used to determine the underlying frequency.

We will consider an external flux that has a time-sinusoidal component (referred to in the figures, as the flux-injected

probe signal): Φe = Φ
(0)
e + q sin(ωpt) and assume, for simplicity, that all the junctions have identical critical currents

I0. As an aside, we mention here that we have obtained similar qualitative results when keeping the external flux
constant and adding a sinusoidal component to the bias current (see Appendix A). To illustrate the effect of the probe
signal, we first performed Langevin simulations for N = 2 and calculated the average screening current Ī . In Fig. 7
we have plotted the power spectrum of this quantity, for two different probe signals; one with a frequency ωp that
differs significantly from and one that is very close to the underlying frequency. The power spectrum was obtained
by averaging 100 timeseries of 223 timesteps each. The figure illustrates clearly that for a probe signal frequency that
matches the broad peak (corresponding to the, in-general, non-sinusoidal running oscillations) in the power spectrum
of the unprobed system, the signal is amplified dramatically (open circle). Thus, adding a probe signal gives us a tool
to investigate the dynamics of the noisy system.

To explore parameter space systematically let us now turn to the FPE. In Fig. 8, we have plotted an example of
the result of a simulation of the FPE. It shows that Ī becomes nearly purely sinusoidal when we include a sinusoidal
probe signal after a transient. It also shows that the amplitude of the oscillations in Ī , AĪ , is a function of ωp. This
is also illustrated in Fig. 9 where we show A2

Ī
/2 (see below), for two different values of M̄ , as a function of ωp. The

appearance of a well defined peak in Fig. 9 demonstrates the classical resonance effect.
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FIG. 7: Power spectra of the screening current for a flux-injected probe signal with ωp = 0.26 and ωp = 0.6. The peaks at the probe

frequency are denoted by a solid square and open circle respectively. Parameter values are D = 0.05, β = 1, J = 0.4, Φe/Φ0 = 0.45,

q = 0.0025 and M = 0.02.
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FIG. 8: Time evolution of the average screening current Ī for two different values of the frequency of the flux-injected probe signal:

ωp = 0.26, ωp = 0.6. Parameters are D = 0.05, β = 1, J = 0.4, Φ
(0)
e = 0.45, and q = 0.01.

Of course, the FPE is strictly valid only for N → ∞, however we have seen that the Fokker-Planck approach already
yields quantitatively correct answers for relative small values of N . Furthermore, the qualitative behavior for N = 2
and N → ∞ is mostly the same. In particular, both limits display the characteristic resonance of Fig. 7. As a test of
our simulations, we can compare the results obtained with the FPE to results obtained with the Langevin equations
for large N . To this end, we calculated the power spectrum of Ī as described above for N = 500. The comparison
is made easier by the fact that the output signal is essentially sinusoidal which allows us to relate A2

Ī
/2 to the peak

in the power spectrum. This power spectrum, for two different values of ωp, is shown in Fig. 9 as an inset. The
peaks of these powerspectrum are plotted as symbols in Fig. 9 and demonstrate that the FPE accurately describes
the dynamics, at least for N ≥ 500.
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FIG. 9: A2
Ī
/2, obtained by solving the FPE, as a function of the flux-injected probe frequency for two different values of the coupling

strength: M̄ = 0.01 (solid line) and M̄ = 0.05 (dashed line). The SQUIDs are identical, with q = 0.01 and remaining parameters as in

Fig. 8. The inset shows the power spectra obtained via direct Langevin simulations for N = 500 for ωp = 0.5 (square), and ωp = 0.27

(triangle). The peaks of these power spectra are also plotted in the main figure.

B. Towards a Theory

Analytical progress can be made if we consider a small amplitude signal, q = εQ, where ε � 1. Thus, Eq. (41)
contains terms with two different time scales and can be analyzed via the method of multiple scales. It is then to be
expected that an appropriate asymptotic method will be able to capture the long-time behavior of ρ. This may be
achieved by introducing fast and slow timescales as follows:

τ =
t

ε
, t = t. (53)

We look for a distribution function which is a 2π-periodic function of δ1, and δ2 according to the Ansatz:

ρ(δ1, δ2, t; ε) =

2
∑

n=0

ρ(n)(δ1, δ2, t, τ)ε
n +O(ε3) (54)

The expansion of the periodic function h(δ1, δ2, ε) = 1
β
(δ1 −δ2 −2π n−2πΦe

Φ0

) in (43), where n is a integer that ensures

the 2π-periodicity of the solution, in powers of ε is given by

h = h(δ1, δ2, 0) + ε
d h

dε

∣

∣

∣

∣

ε=0

+O(ε2). (55)

Taking into account that Φe = Φ
(0)
e + εQ sin(ωpt), we find that

d h

dε

∣

∣

∣

∣

ε=0

= Q sin(ωpt)
d ν

dΦ
(0)
e

, (56)

where

ν =
1

β
(δ1 − δ2 − 2π n− 2π

Φ
(0)
e

Φ0
). (57)

Inserting (54),(55) and (56) into (41), we obtain the following hierarchy of equations for ρ(j):

∂ρ(0)

∂τ
= 0, (58)
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∂ρ(1)

∂τ
= D

[

∂2ρ(0)

∂δ21
+
∂2ρ(0)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1 +
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂

∂δ2

[

(J + ν − sin δ2 −
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂ρ(0)

∂t
, (59)

∂ρ(2)

∂τ
= D

[

∂2ρ(1)

∂δ21
+
∂2ρ(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ
(1) +

2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ
(1)

−
2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂ρ(1)

∂t

+ Q sin(ωpt)

{

∂

∂δ1

[

dν

dΦ
(0)
e

ρ(0)

]

−
∂

∂δ2

[

dν

dΦ
(0)
e

ρ(0)

]}

(60)

where

Ī(0) =

∫ 2π

0

∫ 2π

0

dδ1dδ2 ν ρ
(0), (61)

Ī(1) =

∫ 2π

0

∫ 2π

0

dδ1dδ2

(

ν ρ(1) +Q sin(ωpt)
dν

dΦ
(0)
e

ρ(0)

)

. (62)

The normalization conditions
∫ 2π

0

∫ 2π

0

ρ(n)(δ1, δ2, t) dδ1dδ2 = δ0n (63)

follows from (44).
Eq. (58) implies that ρ(0) is independent of τ . Then the terms in the right side of (59) which do not have τ -dependent

coefficients give rise to secular terms (unbounded on the τ -time scale). The condition that no secular terms should
appear is

D

[

∂2ρ(0)

∂δ21
+
∂2ρ(0)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1 +
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂

∂δ2

[

(J + ν − sin δ2 −
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂ρ(0)

∂t
= 0. (64)

This equation should be solved for ρ(0) together with Eq. (61), the normalization condition, and initial condition data.
Note that this problem is equivalent to solving the FPE (41) without the probe signal. As mentioned above numerical
experiments show that the solution of this FPE evolves towards a stationary state at long times. Such a stationary
solution can be found by imposing ṙmn = 0 in (51), and solving numerically the corresponding nonlinear system of
equations. As in the single SQUID case [15], it is worthwhile to study the input-output transfer characteristic (TC),
which is a convenient descriptor of the system response in terms of experimentally measurable quantities. The TC
is a plot of the average screening current Ī vs. the external flux Φex. In Fig. 10 we show the effect of the coupling
strength on the TCs for two different values of the bias current. The TC is a periodic function in Φex (see (51)), so
only one complete cycle is shown for each J . Notice that in Fig. 10(a), a hysteretic behavior can be observed for
large values of the coupling, and some range of J . The hysteresis is characterized by a negative slope of the transfer
characteristic at Φex = 0.5, showing three possible solutions. Only two of them, however, are stable, corresponding to
the upper and lower branch. By increasing Φex we can reach the upper branch for values of Φex higher than 0.5, while
the contrary takes place when we decrease Φex. The branch connecting the upper and lower branch in Fig. 10(a) can
not be observed in the numerical simulations (see Fig.11), and is therefore most likely unstable. This behavior can
also be found in the noiseless single SQUID case [10]. Note that the effects of the probe signal are absent from the
zero-order expression for the distribution function, ρ(0); they do appear when calculating the first correction, ρ(1).

To calculate first-order corrections, we again impose the condition that no secular terms appear and that the
right-hand side of (60) vanishes. The resulting equation is:

D

[

∂2ρ(1)

∂δ21
+
∂2ρ(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ
(1) +

2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ
(1)

−
2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂ρ(1)

∂t
+Q sin(ωpt)

{

∂

∂δ1

[

dν

dΦ
(0)
e

ρ(0)

]

−
∂

∂δ2

[

dν

dΦ
(0)
e

ρ(0)

]}

= 0. (65)
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The analysis of the equation above can be readily accomplished in Fourier space. Fourier transforming Eq. (65), we
obtain

iωρ̂(1) = D

[

∂2ρ̂(1)

∂δ21
+
∂2ρ̂(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ̂
(1) +

2πM̄

βΦ0
(ˆ̄I

(0)
∗ ρ̂(1) + ˆ̄I

(1)
∗ ρ̂(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ̂
(1)

−
2πM̄

βΦ0
(ˆ̄I

(0)
∗ ρ̂(1) + ˆ̄I

(1)
∗ ρ̂(0))

]

+i
Q

2

{

∂

∂δ1

[

dν

dΦ
(0)
e

(

ρ̂(0)(ω + ωp) − ρ̂(0)(ω − ωp)
)

]

−
∂

∂δ2

[

dν

dΦ
(0)
e

(

ρ̂(0)(ω + ωp) − ρ̂(0)(ω − ωp)
)

]}

, (66)

where

ρ̂(j)(δ1, δ2, ω) =

∫ ∞

−∞

dt e−iωtρ(j)(δ1, δ2, t), j = 0, 1, (67)

ˆ̄I
(0)

=

∫ 2π

0

∫ 2π

0

dδ1dδ2 ν ρ̂
(0), (68)

ˆ̄I
(1)

=

∫ 2π

0

∫ 2π

0

dδ1dδ2

[

ν ρ̂(1) + i
Q

2

dν

dΦ
(0)
e

(

ρ̂(0)(ω + ωp) − ρ̂(0)(ω − ωp)
)

]

, (69)

and ∗ denotes convolution. The equation (66) should be solved for ρ̂(1) together with
∫ 2π

0

∫ 2π

0 dδ1 dδ2 ρ̂
(1) = 0.

Assuming that ρ(0) evolves to a stationary solution for long-time (i.e. ρ̂(0) = δ(ω)f(δ1, δ2)), we find that ρ̂(1) = 0 is
the only solution of (66), unless ω = ±ωp. Then, (66),(69) imply that

ρ̂(1) = η+(δ1, δ2)δ(ω − ωp) + η−(δ1, δ2)δ(ω + ωp). (70)

Inserting (70) in Eq. (66), we obtain two uncoupled equations for η+, and η−. These can be solved, by expanding
η± in Fourier series,

η±(δ1, δ2) =
∞
∑

n=−∞

∞
∑

m=−∞

(T±)mn e
i nδ1eimδ2 , (71)

and solving the corresponding nonlinear systems of equations for the coefficients (T±)mn . Once we obtain (T±)mn , we

can calculate ˆ̄I
(1)

from Eq. (69). Notice that ρ̂(+ωp) = ρ̂∗(−ωp), by taking the complex conjugate in (66), and (69).

Then it follows from (70), and (71) that (T+)mn =
(

(T−)−m
−n

)∗
. Therefore we conclude that ˆ̄I

(1)
(−ωp) =

(

ˆ̄I
(1)

)∗

(+ωp),

and the inverse Fourier transform yields

I(1)(t) = 2 Re

(

ˆ̄I
(1)

(ωp)

)

cos(ωpt) − 2 Im

(

ˆ̄I
(1)

(ωp)

)

sin(ωpt). (72)

Knowing I(1)(t), its amplitude can be readily computed, and the result is

AĪ = 2

√

ˆ̄I
(1)

(ˆ̄I
(1)

)∗ +O(ε2). (73)

In Fig. 12a, we plot the numerical solution for two different values of the coupling and the theoretical approximation
(73), showing a remarkable agreement with the theoretical results corresponding to the first-order expansion. It should
be noticed however that the amplitude of the probe signal considered here is small, q = 0.01. For increasing strength
of the amplitude, higher orders in the expansion may be required. Once ρ(1) is known, it is also straightforward to
find the successive terms in the expansion. Without entering into a detailed study, some general features can easily be
drawn from the hierarchy of equations for ρ(j). Similarly to the analysis for ρ̂(1), and by taking into account that ρ̂(1)

is a function exclusively of ω±ωp, it is straightforward to prove that ρ̂(2) = 0 is the only solution, unless ω = 0,±2ωp.
In general, successive terms will depend on higher harmonics of the main frequency ωp.

Finally we note that the probe signal could also be applied as an addition to the bias current (current-injection),
keeping the external flux Φex constant. The resulting FPE may be solved in a manner analogous to the solution given
above for the flux-injected case. We relegate the details to the Appendix, but show a comparison between the theory
and numerical simulations in Fig. 12b. Again, the agreement is remarkably good.
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and J = 0.35 in (b)). In (a), the points marked by (1),(2) correspond to the solution obtained by numerical simulation of the FPE. Other

parameters are D = 0.1, and β = 1.
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FIG. 11: Time evolution of the average screening current Ī for two different initial conditions. Parameters are D = 0.1, J = 0.1, β = 1,

Φex = 0.5, and M̄ = 0.05 corresponding to the hysteresis regime in Fig. 10(a).

VI. DISCUSSION

In this paper we have investigated the dynamics of an array of globally coupled SQUIDs. We have found that the
coupling can lead to interesting new effects. The main result is that the coupling strength determines the underlying
(i.e. running) frequency of the system. For the deterministic case, this can be seen directly from the exact solution
we have found. For the noisy case, this can be determined either via direct numerical simulations of the Langevin
equations or via the investigation of the FPE we have derived.

As in other nonlinear systems, determining the underlying frequency can have practical applications. Unfortunately,
for large noise levels, this task is generally very difficult. However, we have shown that the inclusion of a sinusoidal
probe signal can be utilized to determine this frequency. In particular, we have found that the power spectrum of
the experimentally relevant observable (the average screening current) displays a classical resonance phenomenon.
As the frequency of the probe signal approaches the underlying frequency, the response gets amplified. Thus, the
plot of response amplitude vs. frequency shows a maximum at the underlying frequency. Noting that the underlying
frequency is a function of the externally controllable bias parameters, we are now in a position to explain the resonance
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the simulations), and M̄ = 0.05 (dashed line for the theory, and open square for the simulations). (a) Flux-injected probe Φ
(0)
e = 0.45,

q = 0.01. (b) Current-injected probe J0 = 0.4, q = 0.01

behavior observed in earlier experiments [12]. In these experiments, a time-sinusoidal probe signal was applied to
a single dc SQUID, with the dc bias current and external magnetic flux used as deterministic laboratory control
parameters. Past the onset of the saddle node bifurcation, characterized by the experimental observation of a phase
diagram analogous to figure (1), we observed a local maximum in the local SNR measured at the probe frequency,
for certain bias parameters. The noise in the experiment was not controlled externally, being assumed to arise from
thermal noise in the junctions. Clearly, the results of this work indicate that such an effect occurs because, at a
particular bias condition, the resulting spontaneous oscillation frequency matches the probe frequency, leading to a
considerable decrease in the local dispersion (measured about the probe frequency). In fact, in our earlier work [2], we
showed that at this resonance, the noise-floor of the device was lowered across the output power spectrum, with the
most striking effects appearing at the probe frequency and its harmonics. The results of this paper, while providing
the basis for explaining the experimental observations, also show that the effect is more striking in a coupled array,
when the coupling coefficient can, in fact, control the resonance via its effect on the underlying oscillation frequency.

The observed resonance phenomenon might be used to develop more sensitive SQUID- based measure-
ment/quantification systems. Imagine trying to detect a weak sinusoidal target signal with an amplitude that is
very small, perhaps even smaller than the noise level. If the target frequency is far removed from the underlying
SQUID frequency this signal will be difficult to detect. However, by coupling SQUIDs and adjusting the coupling
strength (or other control parameters if the coupling strength is inaccessible to adjustment) we can match the under-
lying frequency to the target frequency and increase the response dramatically.

This scenario is shown in Fig. 13 where we have plotted the amplification of the target signal, defined as the power
at the target frequency (output) divided by the power of the target signal (input), as a function of the coupling
strength for N = 2. The curves, for two different values of q, clearly show a typical resonance shape, indicating
the presence of an optimal value of M . The inset of Fig. 13 shows the power spectrum for two different values
of M . The peak values at ωp are also plotted as symbols in the amplification curves. At the optimal value of the
coupling strength, the target signal for the small value of q is amplified by more than 100, representing a dramatic
increase in sensitivity of the SQUID. Note that in this example we have only used two SQUIDs, making this scenario
experimentally plausible.

The results of this paper can be applied to other systems displaying bifurcations; in fact, an application of these
ideas to the problem of noise- induced firing in Type-I neurons is currently being actively explored [24] via an analysis
of the Morris-Lecar model equations in the neighborhood of their saddle-node bifurcation, using center manifold
reduction theory. Note also that, in the single SQUID (as well as the Morris-Lecar neuron), one can approximate
the dynamics near the onset of the bifurcation by simple “Integrate-and-fire” dynamics [2]. This representation is
elegant; it provides a valuable tool for doing analytic calculations near the critical point, and it affords a case for
the universality of such simplified dynamics close to the critical point. The procedure uses the already (via center
manifold theory) computed running frequency to set the width of the “bottleneck” (in the circle representation of the
dynamics near the critical point), following which a linear Langevin equation is written down to describe the diffusion
through the bottleneck with the noise added to the normal form. An analogous procedure for the coupled SQUID
case is currently under investigation.
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APPENDIX A: FPE SOLUTION FOR CURRENT-INJECTED PROBE SIGNAL

In a manner similar to the theory shown in Sec.V B, it is straightforward to analyze the case of a probe signal given
by J = J0 + q sin(ωpt), q = εQ, where ε � 1. In the following, we shall illustrate the main differences. Inserting (54)
into (41), we obtain now the following hierarchy of equations:

∂ρ(0)

∂τ
= 0, (A1)

∂ρ(1)

∂τ
= D

[

∂2ρ(0)

∂δ21
+
∂2ρ(0)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1 +
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂

∂δ2

[

(J + ν − sin δ2 −
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂ρ(0)

∂t
, (A2)

∂ρ(2)

∂τ
= D

[

∂2ρ(1)

∂δ21
+
∂2ρ(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ
(1) +

2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ
(1)

−
2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂ρ(1)

∂t

− Q sin(ωpt)

[

∂ρ(0)

∂δ1
+
∂ρ(0)

∂δ2

]

. (A3)

In a manner analogous to the theory for the flux-probe signal case, necessitated by the need to remove the secular
terms, we obtain the followings equations for ρ(0), and ρ(1):

D

[

∂2ρ(0)

∂δ21
+
∂2ρ(0)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1 +
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂

∂δ2

[

(J + ν − sin δ2 −
2πM̄

βΦ0
Ī(0))ρ(0)

]

−
∂ρ(0)

∂t
= 0, (A4)
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D

[

∂2ρ(1)

∂δ21
+
∂2ρ(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ
(1) +

2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ
(1)

−
2πM̄

βΦ0
(Ī(0)ρ(1) + Ī(1)ρ(0))

]

−
∂ρ(1)

∂t
−Q sin(ωpt)

[

∂ρ(0)

∂δ1
+
∂ρ(0)

∂δ2

]

= 0. (A5)

Fourier transforming Eq. (A5), we obtain

iωρ̂(1) = D

[

∂2ρ̂(1)

∂δ21
+
∂2ρ̂(1)

∂δ22

]

−
∂

∂δ1

[

(J − ν − sin δ1)ρ̂
(1) +

2πM̄

βΦ0
(ˆ̄I

(0)
∗ ρ̂(1) + ˆ̄I

(1)
∗ ρ̂(0))

]

−
∂

∂δ2

[

(J + ν − sin δ2)ρ̂
(1)

−
2πM̄

βΦ0
(ˆ̄I

(0)
∗ ρ̂(1) + ˆ̄I

(1)
∗ ρ̂(0))

]

−i
Q

2

{

∂

∂δ1

[

ρ̂(0)(ω + ωp) − ρ̂(0)(ω − ωp)
]

+
∂

∂δ2

[

ρ̂(0)(ω + ωp) − ρ̂(0)(ω − ωp)
]

}

. (A6)

The equation (A6) can be solved for ρ̂(1) together with
∫ 2π

0

∫ 2π

0 dδ1 dδ2 ρ̂
(1) = 0. In Fig. 12b we show a comparison

between the theoretical solution and the numerical simulation.
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